

	10EF	10EE7
--	------	-------

Seventh Semester B.E. Degree Examination, Dec.2016/Jan.2017 **Electromagnetic Compatibility**

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
2. Missing data if any may be suitably assumed.

PART - A

- a. Explain, with an example, the various interferences that can occur in an equipment and hence explain the importance of EMC. (06 Marks)
 - b. Explain what is meant by designing for EMC.

(06 Marks)

- c. Explain part-15, subpart-J of FCC regulation. Also list the radiation and conduction emission limits for Class A and Class B devices. (08 Marks)
- a. Derive an expression for noise voltage induced in conductor 2 in a system of 2 base conductors. Conductor 1 is having a source of V₁ volts at ω rad/sec frequency. Discuss the variation of noise voltage with frequency.
 - b. Consider two conductors 1 and 2. Conductor 1 has a source and 2 has a shield which is grounded. A part of the conductor extends beyond the shield. Derive an expression for the noise voltage induced in conductor 2. Discuss the effect of conductor extending beyond shield.

 (08 Marks)
 - c. Stray capacitance between conductors 1 and 2 is 50 pF. Each conductor has a capacitance to ground of 150 pF conductor 1 has 10 V ac signal at 100 kHz on it. What is the noise voltage picked up by conductor 2 if it is terminated (i) in infinite resistance (ii) in 1000 Ω resistance (iii) in 50 Ω resistance. Comment on the results. (06 Marks)
- 3 a. Obtain an expression for the noise voltage due to magnetic. Coupling between open wire and a shielded cable with the shield grounded at both the ends. Plot the noise voltage versus frequency and show the shielding effectiveness on the plot. (06 Marks)
 - b. Explain how protection against magnetic field at the receptor can be achieved by decreasing the receptor loop area. Hence show that only limited magnetic field shielding to possible in a circuit grounded at both the ends.

 (08 Marks)
 - c. Derive an expression for the mutual inductance between coplanar loops as shown in Fig. Q3 (c). (06 Marks)

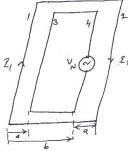
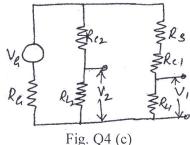



Fig. Q3 (c)

- 4 a. Explain how ground loops become a source of noise. Also explain the various methods of eliminating or minimizing them. (06 Marks)
 - b. Derive an expression for the noise voltage in a circuit with common mode choke and at low frequency. Also plot $\frac{V_N}{V_G}$ versus frequency. (08 Marks)

4 c. Fig. Q4 (c) shows the equivalent circuit of a differential amplifier circuit where $V_G=100 mV$, $R_G=0.01~\Omega$, $R_S=500\Omega$, $R_{C_1}=R_{C_2}=1~\Omega$, $R_{L_1}=R_{L_2}=10 K\Omega$. Obtain the noise voltage at the terminals of the amplifier. If $RL_1=RL_2=100 K\Omega$. What is the noise voltage and discuss the results. (06 Marks)

PART - B

- 5 a. Discuss the role played by balancing in reducing / eliminating the noise pick up. (06 Marks)
 - b. Explain the power supply decoupling. Also discuss how impedance of the power distribution system affects the noise pick up and how it can be reduced. (06 Marks)
 - c. Discuss the following:
 - (i) Emitter follower circuit driving capacitive load.
 - (ii) High frequency filtering.
 - (iii) System band width.
 - (iv) Modulation and coding

(08 Marks)

- 6 a. Discuss the following:
 - (i) Reflection loss due to plane wave
 - (ii) Reflection loss in near field.

(08 Marks)

b. Discuss the electric and magnetic field losses in the far field.

(06 Marks)

c. Explain the effect of multiple reflections in thin shield.

(06 Marks)

- 7 a. Explain the following:
 - (i) Shielding with magnetic materials.
 - (ii) Apertures.
 - (iii) Seams.

(06 Marks)

- b. Write briefly on: (i) Conductive gaskets and (ii) Conductive coating.
- (08 Marks)
- c. What is the reflection loss of 0.001 in thick copper shield to a 1000 Hz electric field? If the thickness is increased to 0.01 in what is the reflection loss? (06 Marks)
- 8 a. Explain ESD mechanism with examples. How these discharges becomes hazard to electronic equipments. (04 Marks)
 - b. Explain the following with respect to ESD:
 - (i) Insulated enclosures.
 - (ii) Keyboards and control panels.
 - (iii) Circuit design and board layout.

(08 Marks)

- c. Explain the following software error detecting techniques:
 - (i) Errors in program flow.
 - (ii) Input-output errors.
 - (iii) Data memory errors.

(08 Marks)